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Abstract

When ejaculates from rival males compete for fertilization, there is strong selection for sperm traits that enhance fertilization
success. Sperm quantity is one such trait, and numerous studies have demonstrated a positive association between sperm
competition and both testes size and the number of sperm available for copulations. Sperm competition is also thought to
favor increases in sperm quality and changes in testicular morphology that lead to increased sperm production. However, in
contrast to sperm quantity, these hypotheses have received considerably less empirical support and remain somewhat
controversial. In a comparative study using the Australian Maluridae (fairy-wrens, emu-wrens, grasswrens), we tested
whether increasing levels of sperm competition were associated with increases in both sperm quantity and quality, as well
as an increase in the relative amount of seminiferous tubule tissue contained within the testes. After controlling for
phylogeny, we found positive associations between sperm competition and sperm numbers, both in sperm reserves and in
ejaculate samples. Additionally, as sperm competition level increased, the proportion of testicular spermatogenic tissue also
increased, suggesting that sperm competition selects for greater sperm production per unit of testicular tissue. Finally, we
also found that sperm competition level was positively associated with multiple sperm quality traits, including the
proportion of motile sperm in ejaculates and the proportion of both viable and morphologically normal sperm in sperm
reserves. These results suggest multiple ejaculate traits, as well as aspects of testicular morphology, have evolved in
response to sperm competition in the Australian Maluridae. Furthermore, our findings emphasize the importance of post-
copulatory sexual selection as an evolutionary force shaping macroevolutionary differences in sperm phenotype.
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Introduction

When females copulate with multiple males during a single

reproductive episode, sperm from these males compete to fertilize

the female’s ova in a process known as sperm competition [1].

Sperm competition is a powerful selective force that favours male

traits that maximize competitive fertilization success. Across a

diverse range of taxa, comparative and experimental studies have

demonstrated that a common evolutionary response to sperm

competition is an increase in testes size [2–7, see also 8]. Indeed,

relative testis size is often used as a measure of sperm competition

[e.g. 9–12]. Furthermore, inter- and intra-specific studies suggest

that sperm competition is positively associated with greater numbers

of sperm (i.e. sperm reserves or ejaculate size) [5,13–15]. This is at

least partially because larger testes produce more sperm [16–20].

However, in addition to testes size, sperm competition may select for

increases in sperm production: species under higher sperm

competition have a greater proportion of sperm-producing tissue

within the testes [21,22]. Currently, however, there is limited

empirical data concerning testis morphology and additional studies

are clearly warranted in order to more fully understand the links

between sperm numbers, sperm production and sperm competition.

Sperm competition is also thought to favor a range of sperm

phenotypic traits that influence the fertilizing capability of an

ejaculate [23,24]. For example, sperm motility influences paternity

success in a range of taxa (e.g. birds [25–27], fish [28,29],

mammals [30]) and, across species, there is a positive association

between the intensity of sperm competition and sperm swimming

speed (birds [31, but see 32], fish [33]). Additionally, sperm

competition is associated with changes in sperm design (e.g.

morphology) and function (e.g. sperm energetics) that influence

swimming velocity [34–36]. More generally, sperm competition

appears to be associated with sperm size, though comparative

studies have found both positive [e.g. 12, 31, 37, 38] and negative

[e.g. 5, 12] associations, as well as no association [e.g. 12, 39],

between these traits [reviewed in 23]. Thus, in contrast to studies

of testes size and sperm numbers, the effects of sperm competition

on sperm phenotype remain relatively unresolved. In particular,

studies on sperm viability are almost entirely lacking; though at

least in insects, sperm viability has been shown to influence

competitive fertilization success [40], and polyandrous species

have been shown to have a greater proportion of viable sperm

available for ejaculates relative to monadrous species [41].

Consequently, further studies of sperm quality traits are needed

to determine how sperm competition shapes inter-specific

variation in sperm phenotype.

Distributed throughout New Guinea and Australia, the

Maluridae are a family of passerine birds comprised of 27 species
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across five genera. In Australia, the malurid genera include the

fairy-wrens (Malurus), emu-wrens (Stipiturus) and grasswrens

(Amytornis) [42,43]. Australian malurids are relatively small

passerines (5 to 40 grams) and species tend to be similar in

general morphology, life-history and ecology [42,44–46]. Impor-

tantly, all species of Australian Maluridae are known or believed to

be socially monogamous, with males and females forming long-

term social pair bonds, but engage in extra-pair copulations [42].

The Australian malurids have become model system for the study

of reproductive promiscuity because some species in this group show

extremely high rates of extra-pair paternity (EPP; e.g. M. cyaneus

[47]). In addition, the five species for which paternity data are

available show remarkable variation in EPP rate, with between

5.8% and 95% of broods in a population containing one or more

extra-pair offspring, and EPP accounting for as little as 4.4% or as

much as 76% of all young in a population [46–52]. These

differences suggest that species experience a broad range of sperm

competition levels. Consistent with this idea, relative testis size is

highly variable in this group, ranging from less than 1% to more

than 6% of male body mass [46,53]. In birds, the incidence of EPP

varies across species from 0 to ,76% of offspring (with values ,5%

considered to be unusual [54,55]) and testes mass ranges from

0.01% to more than 9% of male body mass [11]. Thus the range of

sperm competition levels observed in the Australian malurids

reflects those observed across avian species generally, making them

an ideal system for studying the evolutionary consequences of sperm

competition for male reproductive biology.

In this study, we tested whether increasing levels of sperm

competition were associated with variation in testis morphology

and sperm quantity and quality using data from eight species of

Australian Maluridae. Specifically, we used a phylogenetically-

controlled, comparative approach to determine the relationship

between sperm competition and the number of sperm in sperm

reserves, the number of sperm in ejaculates, the proportion of

motile sperm in ejaculates, the proportion of morphologically

normal sperm and the proportion of viable sperm in sperm

reserves, and the proportion of spermatogenic tissue, relative to

interstitial tissue, contained within the testes. Importantly, all

samples were collected and analyzed by a single individual

specifically for this study. Thus, our study avoids some of the

problems that confound other studies that rely on data gleaned

from the literature, where collection methods may vary and inter-

individual differences in measurement may lead to uncertain and

sometimes erroneous results.

Materials and Methods

Ethical statement
All work was undertaken with approval from the University of

Chicago Animal Care and Use Committee (ACUP#71453), the

Department of Environment and Heritage (South Australia)

Wildlife Ethics Committee (Project No. 13/2004; Scientific Permit

Q24832; AW licence No. 142), the Director-General of New South

Wales Department of Primary Industries Animal Care and Ethics

Committee (Trim File No. 06/3846; NSW NPWS scientific licence

S12048), James Cook University Animal Ethics Review Committee

(approval #A1004), and the Environmental Protection Agency

(EPA) of Queensland. Finally, export of samples from Australia was

approved by the Australian Government Department of Environ-

ment and Heritage (WT2005-10120 and WT2006-10958).

Study species and general field methods
Eight species of Australian Maluridae were studied over a three-

year period (2004–2006). Species included the superb (M. cyaneus

cyanochlamys), splendid (M. splendens melanotus), variegated (M.

lamberti assimilis), blue-breasted (M. pulcherrimus), white-winged (M.

leucopterus leuconotus), and red-backed fairy-wrens (M. melanocephalus),

the southern emu-wren (S. malachurus malachurus), and the striated

grasswren (A. striatus striatus). Populations were studied at several

sites throughout southern and eastern Australia: superb fairy-

wrens were studied at Murray River National Park, South

Australia (140u329E, 34u209S); splendid, white-winged, and

variegated fairy-wrens were studied at Brookfield Conservation

Park, South Australia (139u299E, 34u209S); blue-breasted fairy-

wrens were studied at Lincoln National Park, South Australia

(135u529E, 34u529S); red-backed fairy-wrens were studied at

Moomin Reservoir and Kalinvale Farm, near Herberton, Queens-

land (145u239E, 17u239S); southern emu-wrens were studied near

Smith’s Lake, New South Wales (152u289E, 32u229S); and striated

grasswrens were studied at Pooginook and Cooltong Conservation

Parks, near Berri. South Australia (140u359E, 34u169S).

Birds were captured in mist nets set on their home territory.

Upon capture, birds were weighed to the nearest 0.1 g using a

Pesola spring balance. Additionally, the length (L; measured from

the anterior edge of the cloacal vent to the posterior edge of the

protuberance, thus excluding the cloacal tip), width (W) and depth

(D) of the cloacal protuberance was measured and cloacal

protuberance volume was estimated as volume = p(D/26W/

2)6L [56]. All CP measurements were taken by one of us (MR)

to minimize sampling error. We included data only from males in

breeding condition, indicated by behavioral, morphological or

physiological characteristics (e.g. courtship displays, breeding

plumage, enlarged CP, active spermatogenesis).

Testes size and morphology
We collected three male striated grasswrens, 17 male red-

backed fairy-wrens and six males of each of the following species:

superb, splendid, variegated, blue-breasted, and white-winged

fairy-wrens and the southern emu-wren. We quantified fresh testes

weight (wet mass) for both the left and right testis to the nearest

0.01 g using an electronic balance (Ohaus Navigator) and

calculated the combined testes mass (CTM) as the sum of the

left and right testis mass. We also calculated the gonadosomatic

index (GSI), where GSI = (combined gonad weight/body

weight)6100 [57]. Testes were then fixed in 10% neutral buffered

formalin and transferred to 70% ethanol for transport and later

histological work.

We examined the relative proportion of sperm producing tissue,

compared to interstitial tissue, in testes using standard histological

techniques and image analysis. Following fixation, we dehydrated

and cleaned each testis via a series of increasing alcohol

concentrations (70%, 80%, 95%, 100%) and two changes of

xylene, and then passed the tissue through four changes of

infiltration paraffin (paraffin type 1, Richard-Allan Scientific) at

60uC. We then embedded testes in paraffin (paraffin type 9,

Richard-Allan Scientific) and cut 5-mm thick sections using a

microtome (HM315, Microm) and stained sections with haema-

toxylin-eosin. We captured digital images of four non-sequential

sections of each testis using a Leitz Laborlux S compound light

microscope (at 206 magnification), Spot insight camera (model

14.2) and Spot for mac (version 4.1.1) image capture software

(Diagnostic Instruments, Inc). For each section, we measured the

proportion of seminiferous tubule tissue (relative to interstitial

tissue) using Image-J software and calculated the proportion of

tissue per testis by averaging the values from the four sections. The

total proportion of sperm producing tissue in the testes of an

individual was calculated by averaging the values from the left and

right testis.

Sperm Competition in Australian Maluridae
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Sperm quantity and quality
Sperm samples were collected using standard cloacal massage

techniques [58–60]. Exuded semen was collected in 10 ml micro-

capillary tubes, transferred to micro-centrifuge tubes containing a

known volume of Lago Formulation Avian Semen Extender

(Hygieia Biological Laboratories, Woodland, CA, USA), which is

formulated to maintain sperm membrane integrity for a period of

six hours or more, and mixed thoroughly. All ejaculate samples

were collected and analyzed within three hours of collection using

standard techniques by a single person (MR).

We measured sperm quantity as both as the number of sperm in

ejaculates (i.e. sperm collected via cloacal massage) and the total

number of sperm in the seminal glomera (i.e. sperm reserves). In

the first instance, sperm density was determined in two aliquots of

diluted semen using a calibrated Makler counting chamber

(repeatability of counts within ejaculates: r = 0.93, P,0.0001;

sensu [61]) and total sperm number was calculated by taking into

account the sample dilution and the volume of semen recovered.

Next, to quantify the number of sperm stored by each male, we

first isolated the seminal glomera from males collected for testis

size examination, measured the fresh weight (wet mass) of the left

and right seminal glomerus to the nearest 0.01 g using an

electronic balance (Ohaus Navigator), and calculated the com-

bined seminal glomera mass as the sum of the left and right

glomerus mass. Following this, sperm was flushed from each

glomerus into a known volume of Lago Formulation Avian Semen

Extender and sperm density, based on two aliquots (repeatability

of counts within glomera: r = 0.95, P,0.0001; sensu [61]), and

total count quantified using a Makler counting chamber. The total

number of stored sperm was then calculated by summing the

sperm count from the left and right glomerus and, when ejaculate

samples were collected prior to dissection, the ejaculate sample

sperm count. Finally, because CP size reflects sperm numbers

[14,55] and has been used as a proxy for sperm production in

passerines [62], we include both CP volume and the mass of the

seminal glomera as indirect measures of sperm quantity.

Measures of sperm quality were based on three sperm

phenotypic traits. First, the proportion of motile sperm in

ejaculates was estimated by visual examination [26,63,64].

Specifically, 10 ml of the diluted ejaculate was placed on a glass

slide and the percentage of motile sperm (0–100%, in steps of 5%)

assessed by examining several fields of view under phase contrast

optics at 20 times magnification. Next, the viability and

morphology of sperm from sperm reserves was assessed by

examination of eosin-nigrosin stained sperm smears. Sperm

viability was determined by recording the percentage of live (i.e.

those excluding eosin) sperm [65–67, see also 68, 69]. For each

male, we examined 100 sperm cells on each of two replicate

smears (repeatability of viability counts: r = 0.83, P,0.0001; sensu

[61]), for a total of 200 spermatozoa examined, and averaged these

values to obtain a single metric of sperm viability. At the same

time, sperm were categorized as either normal or abnormal (e.g.

abnormal morphology of the head, midpiece or tail) to quantify

the percentage of morphologically normal sperm in the sperm

reserves of males [30,59]. As for sperm viability, two replicate

smears were examined and values averaged to provide a single

measure of sperm morphology.

The measures we used were chosen instead of more elaborate

assessment techniques (e.g. CASA) because many of our field sites

lacked the necessary infrastructure for these methods. Further-

more, we chose metrics of sperm quality that appear to be less

susceptible to change due to time since collection and temperature

because many of our samples were collected from localities that

prevented immediate assessment (i.e. birds were trapped long

distances from roads and other locations were measures could be

performed). For example, the percentage of motile sperm in

ejaculates is reported to be stable for several hours after collection

[26,70], across a wide range of temperatures (e.g. 24–37uC, [71]).

Statistical analysis
We collected a total of 349 ejaculate samples from eight species

over three years. Males that did not produce an ejaculate sample

were not included in the analysis and, because individual males

were often sampled over consecutive years or more than once

within a season, each male is included only once in the analysis (3–

87 males per species, for details of sample size for all traits see

Supplementary Table 1). However, as not all parameters were

successfully sampled for all individuals, sample sizes vary slightly

for the different metrics of sperm quantity and quality. Non-

normal data distributions were normalized using log (ln)-

transformations (CTM, body mass), and all proportion data

(proportion of interstitial tissue, proportion of motile, viable and

morphologically normal sperm) were arcsine-transformed prior to

analysis. All statistics were performed using the R (2.12.0) software

package [72].

Because comparative studies can be confounded by non-

independence of data as a result of common ancestry [73], we

used a generalized least-squares approach in a phylogenetic

framework [74,75] implemented in the APE package [76].

Additionally, we tested for phylogenetic dependence of traits by

estimating the phylogenetic scaling parameter l, where values of l
close to 0 indicate phylogenetic independence, while values close

to 1 indicate phylogenetic dependence. Finally, likelihood-ratio

testes were used to compare the model with the maximum

likelihood value of l differed from models with l values of 0 or 1.

We used a phylogeny based on allozyme data [77], which has been

recently confirmed using DNA evidence [78]. The striated

grasswren, which was not present on this tree, was replaced with

its congener the black grasswren (A. housei). Because branch length

information was unknown, we assumed a punctuated model of

evolution (i.e. set all branch lengths equal) for all analyses. We

estimated sperm competition level by including both CTM and

male body mass (both log-transformed) as independent variables in

the multiple regression models.

Results

Across the eight species of Maluridae, mean CTM ranged from

0.05 to 0.34 g, or, when expressed as the gonadosomatic index,

from 0.62 to 4.45% of male body mass (Table 1). Combined testes

mass was not related to male body mass (r2 = 0.21, F = 1.60,

P = 0.25, l= 0.99). The testes were predominately comprised of

densely packed spermatogenic tissue, with interstitial tissue

generally accounting for less than 1% (range 0.26 to 1.01%) of

total testicular material. The proportion of spermatogenic tissue in

the testes was positively associated with the level of sperm

competition (Fig. 1). Specifically, using a GLS multiple regression

corrected for phylogeny, we found a significant association

between the proportion of seminiferous tubule tissue in the testes

and both CTM (t = 3.39, P = 0.019) and body mass (t = 23.88,

P = 0.012). The estimated l value for this model was 0.999, and

the model including the maximum-likelihood estimate of l was not

significantly different from either the model with l set to 0

(P = 0.12) or the model with l set to 1 (P = 1).

The four measures of sperm quantity differed significantly

across the species (Table 1). After controlling for phylogeny, we

found a significant association between sperm competition level

and both indirect measures of sperm quantity: CP volume and

Sperm Competition in Australian Maluridae
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seminal glomera mass. In a model including both CTM and body

mass, both CP volume and the mass of the seminal glomera were

independent of body mass, but covaried positively with CTM

(Table 2a). Similarly, we found a positive association between the

number of sperm in the seminal glomera (i.e. sperm reserves) and

testes size, but not body size, of males (Table 2a). Finally, there was

also a trend towards a positive association between the number of

sperm in ejaculate samples and CTM across species, whereas there

was no relationship between sperm numbers in the ejaculate and

body mass of males (Table 2a).

As for sperm quantity, measures of sperm quality varied

significantly across species (ANOVA: motility: F6,211 = 3.42,

P = 0.003; viability: F7,217 = 4.96, P,0.001; morphology:

F7,218 = 6.75, P,0.001). We found a positive relationship between

the percent of motile sperm in an ejaculate and the level of sperm

competition as measured by relative testes size (CTM with body

mass as a covariate; Table 2b, Fig. 2a). Additionally, both the

percent of viable sperm and the percent of morphologically

normal sperm in sperm stores increased with increasing relative

testes size (Table 2b, Fig. 2b, 2c). Neither the proportion of motile

sperm or the proportion of viable sperm were associated with body

mass, but the proportion of morphologically normal sperm was

negatively correlated with male body mass (Table 2b). We

obtained similar result in all analyses using raw species values

(i.e. no phylogenetic control; see Supplementary Table 2).

Discussion

For males, a general evolutionary response to sperm competi-

tion is an increase in testes size [2–7], such that relative testes mass

is a common measure of sperm competition in many taxa,

including birds [e.g. 9–12]. In the current study, we found a more

than seven-fold variation in relative testis size across species of

Australian Maluridae, which suggests that these species experience

a broad range of sperm competition levels: from low in the
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Figure 1. Relationship between relative testes size and the
proportion of spermatogenic tissue contained within the
testes in eight species of Australian Maluridae. Figure is not
controlled for phylogeny (unlike analysis) and relative testes mass
indicates the use of residual values from a linear regression of testis
mass on body mass. Each data point represents a species. For further
statistical details see main text.
doi:10.1371/journal.pone.0015720.g001
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southern emu-wren, low to intermediate in the striated grasswren

and some species of fairy-wrens, to high in other species of fairy-

wren. Our results also revealed a positive association between the

level of sperm competition and both the quantity and quality of

sperm. Furthermore, we found that increasing levels of sperm

competition were associated with a relatively greater proportion of

seminiferous tubule tissue in the testes. Thus, across species of

Australian Maluridae, post-copulatory sexual selection appears to

select for a suite of male traits that may influence competitive

fertilization success.

Under conditions of sperm competition, male fertilization

success is commonly determined by the number of sperm, relative

to rival males, transferred during copulation [62,79–81]. We

showed that across species the number of sperm in both sperm

reserves and in ejaculates was positively associated with the level of

sperm competition. Generally, large sperm reserves are thought to

secure paternity success via frequent copulation (i.e. few sperm per

copulation/many copulations; [14,82]). In the fairy-wrens, how-

ever, copulation is believed to be relatively infrequent and under

female control [41,83,84]. Furthermore, in some fairy-wrens (i.e.

splendid, superb, white-winged and red-backed fairy-wrens), the

number of sperm in ejaculates is very large (ca. 33–486106 sperm)

compared with data available for a few other species. For example,

in the zebra finch (Taeniopygia guttata), the number of sperm in

ejaculates ranged from 0.17–5.296106 [85]; and in the much

larger Japanese quail (Coturnix coturnix; mass ,120 g), the mean

number of sperm in ejaculates was 126106 [86]. Even in the

promiscuous red-winged blackbird (Agelaius phoeniceus), sperm

Table 2. Multiple regression analyses controlling for phylogeny (GLS) of sperm quantity and quality in relation to combined testis
mass and body mass across eight species of Australian Maluridae.

predictor slope t P l

(a) Sperm quantity

CP volume testis mass 58.37 2.89 0.03 ,0.001 1.0; 0.09

body mass 245.39 21.34 0.24

Seminal glomera mass testis mass 0.04 4.32 0.007 ,0.001 1.0; 0.04

body mass 20.03 21.94 0.11

Sperm stores testis mass 152.33 3.14 0.02 ,0.001 1.0; 0.07

body mass 2172.23 22.11 0.09

Ejaculate sperm count testis mass 31.05 2.44 0.07 ,0.001 1.0; 0.04

body mass 240.69 22.23 0.09

(b) Sperm quality

Motile sperm in ejaculates testis mass 0.24 2.94 0.04 ,0.001 1.0; 0.02

body mass 0.05 0.45 0.67

Viable sperm in sperm reserves testis mass 0.15 2.99 0.03 ,0.001 1.0; 0.007

body mass 20.04 20.47 0.66

Morphologically normal sperm in sperm
reserves

testis mass 0.18 4.23 0.008 ,0.001 0.14; 0.5

body mass 20.36 24.95 0.004

The model including the maximum-likelihood value of l was compared against the models including l= 0 and l= 1, and superscripts following the l estimates indicate
significance levels of the likelihood-ratio testes (first position: against l= 0; second position: against l= 1).
doi:10.1371/journal.pone.0015720.t002

Figure 2. Relationship between the level of sperm competition (measured as relative testes size) and a) the proportion of motile
sperm in ejaculates, b) the proportion of viable sperm in sperm stores, and c) the proportion of morphologically normal sperm in
sperm stores. Unlike all analyses, figures are not controlled for phylogeny. The values for relative testes mass are the residuals obtained from a
linear regression of testes mass on body mass. Proportion data are arcsine-transformed. Each data point represents a species. See main text for
further statistical details.
doi:10.1371/journal.pone.0015720.g002
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numbers do not match those observed in fairy-wrens (mean sperm

number: 12.56106 [87]). The large sperm reserves and ejaculate

size of fairy-wrens may therefore represent an alternate paternity

strategy, whereby males maximize paternity success via the

transfer of large numbers of sperm in one or a few ejaculates

(i.e. many sperm per copulation/few copulations).

While the fitness benefits of increased sperm quantity are well

understood, the mechanisms of sperm production and the

potential selective forces operating on these mechanisms remain

relatively unexplored. High sperm production can be achieved via

an increase in relative testis size, an increase in the efficiency of

sperm production (daily sperm production per unit of testes tissue,

[16,88]), or a combination of these factors. Sperm production

efficiency may be increased if the proportion of spermatogenic

tissue (relative to interstitial tissue) in the testes increases. In the

current study, we demonstrated that increasing levels of sperm

competition are accompanied by an increase in the relative

proportion of seminiferous tubule tissue in the testes of Australian

malurid species, which is consistent with recent results from two

other avian families [22]. The congruent results of these two

studies suggests that selection for sperm production rates via an

increase in the amount of sperm-producing tissue may be a

common evolutionary response to sperm competition, at least in

passerine birds. However, the amount of spermatogenic tissue in

the testes varies over a very small range in the Maluridae, and

whether these small differences translate into significant differences

in sperm production is unknown. An alternative, and perhaps

equally likely, explanation of these results is that a correlation

between testis size and spermatogenic tissue arises as an artefact of

testicular structure scaling: if interstitial tissue does not scale

isometrically with testicular size, larger testes will show a

proportionally greater amount of sperm-producing tissue simply

because the proportion of interstitial tissue decreases. These

hypotheses are not necessarily mutually exclusive, however, and it

is clear that additional studies are needed in order to understand

the factors shaping testicular morphology.

The efficiency of sperm production may also be influenced by

the duration of the cycle of the seminiferous epithelium (and

consequently the rate of spermatogenesis). As Lüpold and

coworkers [22] suggest, data regarding spermatogenesis in birds

is limited in scope and focused on a few domesticated species (e.g.

japanese quail [86,89], turkey [90]). In mammals however,

elevated levels of sperm competition are associated with a shorter

seminiferous epithelium cycle length [91–93]. These studies

highlight the need to integrate data on relative testis size and the

kinetics of spermatogenesis in order to understand selection on

sperm production in males. Finally, as sperm production may also

be shaped by the number of mitotic divisions of spermatogonia,

the capacity of sperm to survive and complete spermatogenesis,

and the duration of sperm transport, future studies should also aim

to investigate these aspects of spermatogenesis.

In addition to selection for more sperm, postcopulatory sexual

selection appears to select for higher quality sperm in the

Maluridae. In birds, fertilization success is determined by sperm

mobility [25,94] and the percentage of motile sperm in an

ejaculate [26]. Thus, selection at the intraspecific level appears to

translate to macroevolutionary patterns of increased swimming

speed [31] and a greater percentage of motile sperm (this study)

with increasing levels of sperm competition. There are two main

reasons to assume that the percent of viable sperm and

morphologically normal sperm may also influence fertilization

success in birds. First, only viable and morphologically normal

sperm enter the sperm storage tubules of females [95,96], and

second, morphologically abnormal sperm appear less effective at

reaching the infundibulum (the site of fertilization) and penetrating

an egg to achieve fertilization [69]. In addition, these traits have

been shown to influence fertility in other taxa (e.g. sperm viability,

insects, [40]; morphologically normal sperm, deer, [30]). We

found significant interspecific variation in the proportion of viable

and morphologically normal sperm. Specifically, our results

showed that species experiencing higher levels of sperm compe-

tition had a greater proportion of morphologically normal and

viable sperm available for copulation, suggesting sperm

viability and morphology are favored under conditions of sperm

competition.

The occurrence of dead or morphologically abnormal sperm is

generally attributed to production errors during spermatogenesis

[97,98], or may result from increased replication-dependent

mutations associated with increased sperm production [99] if

these mutations alter sperm phenotype. Our results suggest that

postcopulatory sexual selection may favor mechanisms that

minimize sperm production errors and maintain sperm integrity

during transport and storage. In the testes, oxidative stress results

in a reduced capacity to differentiate normal sperm [100].

Additionally, oxidative stress reduces both sperm motility and

viability [101,102]. Consequently, selection may target mecha-

nisms underlying sperm function aimed at avoiding oxidative stress

and preventing oxidative damage to sperm structures (see [103]).

Alternatively, males may be able to allocate substances to their

testes and semen that protect sperm integrity and influence sperm

quality (see [104,105]); as has been observed in Drosophila (e.g.

protease inhibitors, anti-microbial peptides [106]).

Regardless of the underlying cause(s) of extra-pair copulation,

female promiscuity has significant evolutionary consequences for

the reproductive biology of male Australian malurids. In the

current study, we show that postcopulatory sexual selection is

associated with an increase in the quantity and quality of sperm in

sperm reserves and ejaculates. Furthermore, we demonstrate that

increased sperm quantity is likely achieved, not only through an

increase in testes size, but through selection for greater sperm

production via an increase in the relative amount of sperm-

producing tissue contained within the testes. Future intraspecific

studies that investigate the relative importance of these sperm traits

on male paternity success will provide a more comprehensive

understanding of how these macroevolutionary patterns in sperm

traits have evolved.
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